First Resistance Mechanisms Characterization in Glyphosate-Resistant Leptochloa virgata
نویسندگان
چکیده
Leptochloa virgata (L.) P. Beauv. is an annual weed common in citrus groves in the states of Puebla and Veracruz, Mexico limiting their production. Since 2010, several L. virgata populations were identified as being resistant to glyphosate, but studies of their resistance mechanisms developed by this species have been conducted. In this work, three glyphosate-resistant populations (R8, R14, and R15) collected in citrus orchards from Mexico, were used to study their resistance mechanisms comparing them to one susceptible population (S). Dose-response and shikimic acid accumulation assays confirmed the glyphosate resistance of the three resistant populations. Higher doses of up to 720 g ae ha-1 (field dose) were needed to control by 50% plants of resistant populations. The S population absorbed between 7 and 13% more 14C-glyphosate than resistant ones, and translocated up to 32.2% of 14C-glyphosate to the roots at 96 h after treatment (HAT). The R8, R14, and R15 populations translocated only 24.5, 26.5, and 21.9%, respectively. The enzyme activity of 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) was not different in the S, R8 and R14 populations. The R15 Population exhibited 165.9 times greater EPSPS activity. Additionally, this population showed a higher EPSPS basal activity and a substitution in the codon 106 from Proline to Serine in the EPSPS protein sequence. EPSPS gene expression in the R15 population was similar to that of S population. In conclusion, the three resistant L. virgata populations show reduced absorption and translocation of 14C-glyphosate. Moreover, a mutation and an enhanced EPSPS basal activity at target-site level confers higher resistance to glyphosate. These results describe for the first time the glyphosate resistance mechanisms developed by resistant L. virgata populations of citrus orchards from Mexico.
منابع مشابه
Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.
Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a hi...
متن کاملTarget and Non-target Site Mechanisms Developed by Glyphosate-Resistant Hairy beggarticks (Bidens pilosa L.) Populations from Mexico
In 2014 hairy beggarticks (Bidens pilosa L.) has been identified as being glyphosate-resistant in citrus orchards from Mexico. The target and non-target site mechanisms involved in the response to glyphosate of two resistant populations (R1 and R2) and one susceptible (S) were studied. Experiments of dose-response, shikimic acid accumulation, uptake-translocation, enzyme activity and 5-enolpyru...
متن کاملAssessment of glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) and fleabane (Conyza albida Willd. ex Spreng) populations from perennial crops in Greece
The extended use of glyphosate resulted to its reduced efficacy against increasingly problematic weeds, such as Conyza spp. The objectives of this study were to determine the occurrence of glyphosate resistance in horseweed (C. canadensis) and fleabane (C. albida) populations in Greece, to evaluate the effect of weed growth stage on glyphosate efficacy under controlled environmental condit...
متن کاملHow plants survive glyphosate
Glyphosate is the most widely used herbicide in the world for several reasons, including: 1) high level of effectiveness, 2) flexibility in application, 3) large margin of crop safety in glyphosate resistant crops, and 4) safety to applicators and the environment. Glyphosate was used for more than 20 years before weeds developed resistance to the chemical. This relative low risk of glyphosate r...
متن کاملCharacterization of glyphosate resistance in cloned Amaranthus palmeri plants
Glyphosate-resistant Palmer amaranth from Georgia (GA), USA, possesses multiple copies of the gene that encodes 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), the enzyme target site of this herbicide. The cloned plants of glyphosate-resistant and glyphosatesusceptible Palmer amaranth biotypes from Mississippi (MS), USA, and GA were evaluated for glyphosate injury (digital imaging) in leaf...
متن کامل